
Hello, and welcome to this presentation on the 
advanced-control, general-purpose and basic timers
embedded in STM32 microcontrollers. 
It covers their main features which are useful for 
handling any timing-related events, generating 
waveforms and measuring the timing characteristics of 
input signals.
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The STM32 embeds multiple timers providing timing 
resources for software or hardware tasks.
The software tasks mainly consist of providing time 
bases, timeout event generation and time-triggers. 
The hardware tasks are related to I/Os: the timers can 
generate waveforms on their outputs, measure incoming 
signal parameters and react to external events on their 
inputs. 
The STM32 timers are very versatile and provide 
multiple operating modes to off-load the CPU from 
repetitive and time-critical tasks, while minimizing 
interfacing circuitry needs. 
All STM32 timers (with the exception of the low-power 
timer and high resolution timer) are based on the same 
scalable architecture. 
Once the timer operating principles are known, they are 
valid for any of the timers. 
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This architecture includes interconnection features and 
allows several timers to be combined into larger 
configurations. 
Lastly, some of the timers feature specific functions for 
electrical motor control and digital power conversion such 
as lighting or digital switched mode power supplies.
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Here are the key features of the STM32 timers. 
All timers are based on the same architecture and are
available in several derivatives listed later in this 
presentation. 
The timers mainly differ in the number of inputs and 
outputs they have, from a pure time base without any 
I/Os to an advanced control version with 11 I/Os. 
Most of the timers feature 16-bit counters, while some 
have 32-bit counters. 
Some features may not be present on the smallest timer 
derivatives (for example, DMA, synchronization, and 
up/down counting modes).
Most of the timers can be linked and synchronized to 
build larger time-base timers, have a higher number of 
synchronous waveforms, or handle complex timings and 
waveforms.
Within a timer, each channel can be configured 
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independently as an input (typically for capture) or as an 
output (typically for a PWM).
The timers can serve as a trigger for other peripherals, for 
instance to start ADC conversions, or to monitor the 
internal clocks, thanks to the interconnect matrix.
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This slide presents the block diagram of the TIM1 timer, 
which has the same architecture as TIM8 and TIM20.
The timer kernel consists of a 16-bit up/down counter, 
coupled with an auto-reload register to program the 
counting period. 
If the repetition counter is used, the update event is 
generated after upcounting is repeated for the number of 
times programmed in the repetition counter register.
Else the update event is generated at each counter 
overflow.
In order to update the contents of configuration registers, 
a preload register is implemented.
The content of the preload register is transferred into the 
shadow register permanently or at each update event. 
For instance, this synchronization mechanism may be 
used to update the contents of the Auto-Reload Register 
present in this figure.
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The other units of the timer block are:
• The clock and synchronization unit in charge of 

providing the timer clock and triggers
• The channels in charge of, input capture, output 

compare, PWM generation and One-pulse mode output
• The break circuitry in charge of putting the timer’s 

output signals in a safe user selectable configuration.
These other units will be described in the next slides.
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The clock and synchronization unit provides the 
reference clock to the timer kernel, called CK_PSC.
The counter clock can be provided by the following clock 
sources
• The internal clock (CK_INT)
• External clock mode1: external input pin, counting 

each rising or falling edge on a selected input or 
internal triggers

• External clock mode2: external trigger input ETR or 
triggers 

• Encoder mode, based on TI1FP1 and TI2FP2 coming 
from the channels.

ETR is a trigger that can be asserted by ADC analog 
watchdogs, comparators or ETR input.
ITR is a trigger that can be asserted by another timer.
Internal trigger in and out are connected to the 
Interconnect matrix, refer to the related presentation. 
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A rising edge of the selected trigger input (TRGI) sets the 
TIF flag.
When one timer is configured in Master Mode, it can 
reset, start, stop or clock the counter of another timer 
configured in Slave Mode.
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Timer 1 supports 6 independent channels for:
• Input capture (except channels 5 and 6)
• Output compare
• PWM generation (Edge and Center-aligned Mode)
• One-pulse mode output.
When a capture or compare event occurs, the 
corresponding CCI flag is set.
Shown on the left are the input stage and the input 
conditioning circuitry while on the right we have the 
output stage.
Note that TIM1CH1 to 4 pins appear on both sides to 
indicate they are both input and output capable.
Channels 1 to 4 can be output on pins, while channel 5 
and 6 are only available inside the microcontroller (for 
instance, for compound waveform generation or for ADC 
triggering).
The Timer 1 supports break inputs that can be used to 

6



automatically set the channel outputs in a predefined 
state whenever a break event occurs.
The Timer 1 also supports a Dead Time Generator unit 
(DTG) that inserts a dead time on PWM complementary 
outputs of channels 1 to 4.
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The purpose of the break function is to protect power 
switches driven by PWM signals.
The two break inputs are usually connected to fault 
outputs of power stages and 3-phase inverters. 
When activated, the break circuitry shuts down the PWM 
outputs and forces them to a predefined safe state. 
A number of internal MCU events can also be selected to 
trigger an output shut-down.
The break features two channels. 
A break channel which gathers both system-level fault 
(clock failure, parity error,...) and application fault (from 
input pins and built-in comparator), and can force the 
outputs to a predefined level (either active or inactive) 
after a dead time duration. 
A break2 channel which only includes application faults 
and is able to force the outputs to an inactive state.
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Advanced control timers and general-purpose timers 
feature multiple clocking options.
The Clock and synchronization unit, also responsible for 
timer chaining, handles the clock for the counter.
The default clock comes from the Reset and Clock 
Controller.
This timer clock CK_INT is the APB clock PCLK.
External timer clocking makes it possible to count 
external events or to have a counting period externally 
adjusted. 
The clock source can be provided by other on-chip 
timers, using one of the 11 internal trigger inputs (ITR0 to 
ITR10). 
Input pins 1 and 2 can also serve as external clocks, with 
the option of including digital filters to remove spurious 
events. 
The external trigger input (ETR) can be configured as an 
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external clock, with a digital filter, programmable edge 
sensitivity and a first basic prescaler stage to reduce the 
frequency of incoming signals if needed. 
External triggers can be generated by ADC watchdogs 
and comparators in addition to the ETR pin. 
The TI1F_ED Edge Detector input can also be used as 
the timer clock. 
A pulse is generated on both rising and falling edges of 
the TI1F signal. 
Although it was not intended for this, it can serve as a 
frequency doubler with an external clock (count twice per 
incoming clock period).
Lastly, the signals from an encoder can be processed to 
provide a clock and a counting direction, as described 
later in this presentation.
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This slide explains how to adjust the timer counting 
period.
Each timer embeds a linear clock prescaler which allows 
you to divide the clock by any integer between 1 and 
65536. 
The counting pace can therefore be precisely adjusted. 
For instance, a division by 64 will yield a precise 1 MHz 
counting rate when the APB clock is 64 MHz.
The auto-reload register defines the counting period. 
In Down-counting mode, the counter is automatically 
reloaded with the period value when it underflows. 
In Up-counting mode, the counter rolls over and is reset 
when it exceeds the auto-reload value.
In center-aligned mode (up and down counting), the 
counter counts from 0 to the auto-reload value minus 1, 
generates a counter overflow event, then counts from the 
auto-reload value down to 1 and generates a counter 

9



underflow event. Then it restarts counting from 0.
An update event is issued when the counter underflows 
or overflows and a new period starts. 
It triggers an interrupt or DMA request that is used for 
adjusting timer parameters synchronously with its period, 
which is useful for real-time control. 
This update event triggers the transfer from preload to 
shadow registers for multiple parameters, and in 
particular for the clock prescaler, auto-reload value, 
compare registers and PWM mode. 
A 16-bit programmable repetition counter allows you to 
decouple the interrupt issuing rate from the counting 
period, and have, for instance, one interrupt every single, 
2nd, 3rd and up to 256th PWM period. This is particularly 
useful when dealing with high PWM frequencies.
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Some of the STM32 timers feature up/down counting 
modes: the advanced control timers 1/8/20 and the
general-purpose timers 2/3/4/5.
The counting direction can be programmed by software 
or automatically managed by the timer in center-aligned 
PWM mode. 
In this mode, the counting direction changes 
automatically on counter overflow and underflow. 
For a given PWM switching frequency, this mode 
reduces the acoustic noise by doubling the effective 
current ripple frequency, thus providing the optimum 
tradeoff between the power stage’s switching losses and 
noise.
The counting direction can also be automatically handled 
when the timer is in Encoder mode. 
Quadrature encoders are typically used for high-
accuracy rotor position sensing in electrical motors, or for 

10



digital potentiometers. 
From the two outputs of a quadrature encoder sensor 
(also called an incremental encoder), the timer extracts a 
clock on each and every active edge and adjusts the 
counting direction depending on the relative phase-shift 
between the two incomings signals. 
The timer counter thus directly holds the angular position 
of the motor or the potentiometer.
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The timers present in the STM32G4 implement a new 
counting mode when the encoder interface is used.
In addition to x2 and x4 modes, the x1 mode is 
supported. 
As shown in the timing diagram, in x1 mode, the counter 
value is updated on a single clock edge, depending on 
the direction.
Here the falling edge of Channel A is used when DIR is 
equal to 0 and the rising edge of Channel A when DIR is 
equal to 1.
It may be necessary to switch from one encoder mode to 
another during run-time. 
This is typically done at high-speed to decrease the 
Update interrupt rate, by switching from x4 to x2 to x1 
mode.
For this purpose, the SMS field, which selects the mode, 
can be preloaded.
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In addition to the quadrature encoder mode, the timer 
offers support other two types of encoders.
In the “clock plus direction” mode shown on the top 
timing diagram, the clock is provided on a single line, on 
TI2, while the direction is forced using the TI1 input.
In the “directional clock” mode shown on the bottom 
timing diagram, the clocks are provided on two lines, with 
a single one at once, depending on the direction, so as 
to have one up-counting clock line and
one down-counting clock line.
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Two types are encoder are used to driver motors:
• Incremental encoders do not provide a reference

position
• Absolute encoders provide an index signal, indicating 

an absolute reference position.
The counter can be reset by the index signal. 
The Index signal must be connected to the TIMx_ETR
input. 
It can be filtered using the digital input filter.
An encoder with index feature has three outputs: A and B 
used to control the incrementation / decrementation of 
the counter and the index, which is asserted once per 
revolution.
In the timing diagram, the zero pulse is generated when 
the shaft reaches a particular position.
Without an explicit index, interrupts and software are 
needed to calculate the index, thus causing additional 
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CPU burden.
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The index feature is supported in all encoder modes: 
quadrature, clock plus direction, and directional clock.
The upper timing diagram assumes quadrature mode is
used.
When the index pulse is detected, the counter is reset.
Commercially available encoders are proposed with 
several options for index pulse conditioning:
• Gated with A and B: the pulse width is 1/4 of one 
channel period, aligned with both A and B edges
• Gated with A (or gated with B): the pulse width is 1/2 of 
one channel period, aligned with the two edges on 
channel A (resp. channel B)
• Ungated: the pulse width is up to one channel period, 
without any alignment to the edges.
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It is necessary to define on which encoder state, that is 
channel A and channel B state combination, the index
must be synchronized, using the IPOS bitfield in the 
TIMx_ECR register.
The Index detection event will act differently depending 
on counting direction to ensure symmetrical operation 
during speed reversal:
• The counter is reset during up-counting (DIR bit = 0).
• The counter is set to TIMx_ARR when down counting.
This allows the index to be generated on the very same 
mechanical angular position whatever the counting 
direction.
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The timer unit supports post-processing of the Index 
input:
• When Directional index sensitivity is enabled, the index 

is active only in a selected counting direction.
• The upper timing diagram shows the relationship 

between index and counter reset events, depending on 
IDIR field value.

• For example when IDIR=01, index resets the counter 
when up-counting only.

• The second post-processing option allows the Index to 
be taken only once, as shown on the bottom timing 
diagram.

When FIDX=1, once the first index has arrived, any 
subsequent index will be ignored. 
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The timer unit detects two types of encoder errors.
For encoder configurations where 2 quadrature signals
are available, it is possible to detect transition errors. 
The reading on the 2 inputs corresponds to a 2-bit gray 
code which can be represented as a state diagram. 
A single bit is expected to change at once. 
A transition error interrupt can be generated when an 
erroneous transition occurs.
For encoder having an Index signal, it is possible to 
detect abnormal operation resulting in an excess of 
pulses per revolution. 
An encoder with N pulses per revolution will provide 4xN 
counts per revolution. 
The Index signal will reset the counter every 4xN clock 
periods. 
If the counter value is incremented from 0 to auto-reload 
value or decremented from auto-reload value to 0 
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without any index event, this will be reported as an Index 
position error. 
An interrupt can be generated when this error occurs.
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The simplest use case for a timer is to provide an 
internal time base.
This is commonly used by software routines, either to 
provide periodic interrupts or single-shot timeout 
protection. 
The timer can also provide periodic triggers to other on-
chip peripherals, such as the ADC, DAC and other timers 
through the interconnect matrix.
An update event from the timer (typically on counter 
overflow) is the usual means to have a software time 
base interrupt or to trigger a periodic event. 
The basic timers TIM6 and TIM7 are best suited for such 
a task, as they are the simplest timer derivatives with no 
input/output channel.
It is also possible to generate internal timings using any 
other timer, using compare events or using the trigger 
outputs on any other timer.
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Multiple timing events can be generated with a single 
timer using multiple compare channels.
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This slide describes the input capture features.
Channels 1 to 4 can be individually configured as input
capture with a number of signal conditioning options. 
An input can be mapped on two capture channels 
(typically to differentiate rising-edge from falling-edge 
capture), see the figure on the top right. 
TRC input can be chosen as the capture trigger, it is 
connected to one of the ITR inputs (timer-to-timer 
interconnect).
The edge sensitivity is programmable and can be rising 
edge, falling edge or both edges. 
An event prescaler allows capture of one event every 2, 
4 or 8 events. 
This decreases the CPU burden when processing high 
frequency signals and allows the measurement to be 
more accurate, since it is performed over multiple input 
signal periods.
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Spurious transition events due to noise or bounces can 
be removed using a programmable digital filter. 
The figure shows how a signal is filtered when the filter 
acceptance is set to 4. 
In the upper case, a clean rising edge capture is triggered 
4 sampling periods after the rising edge, as one can 
notice looking at the internal counter value. 
In the lower case, a glitch causes the filter counter to be 
reset and the capture to happen after 4 successive 
samples at high level have been counted.
Once the capture trigger is issued, the timer’s counter is 
transferred into the capture register and an interrupt or a 
DMA request can be issued. 
If a new capture occurs before the previous one has been 
read, the capture register is over-written and an over-
capture flag is set for the software to manage this 
condition if needed.
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This slide presents some of the more advanced capture-
related functions.
The Clear-on-capture mode causes a counter reset 
immediately after the capture has been triggered. 
This allows a direct measurement of the period, while a 
traditional free-running counter would require additional 
computation to obtain the period following the trigger.
In PWM input mode, the timer is able to capture both the 
period and the duty cycle of an incoming PWM signal. 
The input signal is internally routed to 2 capture 
channels. 
The signal’s rising edge is captured on input capture 2 to 
provide the period value with the Clear-on-capture mode. 
The falling edge is captured by the capture 1 channel, 
which provides the pulse length duration. 
The duty cycle then simply corresponds to the ratio 
between input capture 1 and input capture 2.
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Lastly, the timer includes an XOR function to combine the 
three input channels with XOR logic. 
This is typically used to handle the three 120° phase-
shifted signals coming from the Hall sensors in electrical 
motors. 
This allows you to have a clear on capture happening on 
each and every edge of the three signals and have a 
capture value directly usable for speed regulation.
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This slide presents the output compare features.
A compare event is generated when the counter matches
the value of the compare register. 
This event can trigger an interrupt or a DMA request and 
can be reflected on the corresponding output pin by an 
output set, output reset or output toggle.
The compare register can be preloaded. 
The preload must be disabled if multiple compare values 
must be written during a counting period. 
In the timing diagram, preload is disabled.
On the contrary, the use of preload mode must be 
preferred for applications with real-time constraints, since 
this gives a higher time margin for the software to update 
the compare register with the next value. 
The transfer from the preload to the active value is 
triggered by an update event, when the counter 
overflows or underflows.
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The output compare mode can also be preloaded, so as 
to allow glitch-less transition from a PWM mode to a 
forced On or Off state, for instance.
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One-pulse mode is used to generate a pulse of a 
programmable length in response to an external event.
The pulse can start as soon as the input trigger arrives or 
after a programmable delay. 
The compare 1 register (CCR1) value defines the pulse 
start time, while the auto-reload register (ARR) value 
defines the end of pulse. 
The effective pulse width is then defined as the 
difference between the ARR and CCR1 register values. 
See the upper timing diagram.
The waveform can be programmed to have a single 
pulse generated by the trigger, or to have a continuous 
pulse train started by a single trigger.
One-pulse mode also offers a re-triggerable option. 
The timing diagram at the bottom of this slide describes 
this option.
A new trigger arriving before the end of the pulse will 
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cause the counter to be reset and the pulse width to be 
extended accordingly.
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This slide presents some of the PWM modes.
The standard edge-aligned PWM mode is programmed
with the auto-reload register defining the period and the 
compare register defining the duty cycle, the counter 
being in up-only or down-only counting mode. A single 
timer can generate up to 6 PWM signals with 
independent duty cycles and identical frequency. 
When multiple PWM waveforms are generated by the 
same timer, all falling edges occur at the same time, 
hence the term edge-aligned. 
On the contrary, the rising and falling edges of center-
aligned PWMs are not synchronized with the counter roll-
over, so that switching time varies with the duty cycle 
value. 
This is achieved by programming the counter in up-down 
mode. 
This mode is interesting as it spreads the switching noise 
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when multiple PWMs are generated with the same timer. 
This is a key feature for three-phase PWM generation for 
electric motor drives, since it allows you to double the 
frequency of the current ripple for a given switching 
frequency. 
For instance, a 10 kHz PWM will generate inaudible 
20 kHz current ripple. 
This minimizes the switching losses due to the PWM 
frequency while guaranteeing silent PWM operation. 
A variant of the center-aligned mode is the asymmetric 
PWM mode, where two compare registers define the 
turning on and off of the PWM signal. 
This provides higher resolution for pulse width setting, 
since turn-on and turn-off times are individually defined. 
It also allows the generation of phase-shifted PWM 
signals, necessary to drive DC/DC converters based on 
the full-bridge phase-shifted topology. 
In the bottom right timing diagram, the timer provides two 
PWM signals with identical frequency, 50% duty cycle, 
and a phase-shift varying from 0 to 180°.
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This slide presents the combined PWM modes.
This mode allows a logic combination of two PWM
signals to be generated by adjacent channels (output 
compare 1 and 2 or output compare 3 and 4). 
The PWMs can be ORed or ANDed to create complex 
waveforms. 
Typically, this allows to have two periodic pulses 
generated with any pulse width and any phase 
relationship value.
Combined 3-phase PWM mode allows one to three 
center-aligned PWM signals to be generated with a 
single programmable signal ANDed in the middle of the 
pulses.
This mode specifically targets 3-phase motor control 
applications. 
In this case, channel 5 of the timer can be combined with 
any of the three channels (1, 2 and 3) to insert a low 
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state in the middle of a centered-pattern PWM signal. 
This mode greatly simplifies the implementation of low-
cost current sensing techniques for 3-phase motor 
control, using a technique usually referred to as zero 
vector insertion.
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This slide presents some more specific PWM modes, 
where either the frequency or the duty cycle can be
driven by external signals.
The timer can provide variable frequency signals, using 
an external reset signal connected either on the ETR, or 
on the channel 1 or 2 inputs. 
The purpose of this mode is to provide a signal with a 
fixed On or Off time and a continuously adjusted 
frequency controlled by the hardware. 
The timer provides control for the On (or Off) time, using 
the compare register, while the auto-reload register 
guarantees that the PWM will not stop if the external 
reset is missing, thus providing a safe control in 
boundary conditions.
This technique is used for a variety of purposes, such as 
transition mode PFC (Power Factor Controller) for mains-
supplied applications and current-controlled digital LED 
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lighting.
Another mode for the timer is to have the duty cycle 
controlled by hardware, with either an on-chip comparator 
or an off-chip signal. 
The PWM operates at a fixed frequency, the maximum 
duty cycle is set by the compare register and the actual 
value controlled cycle-by-cycle. 
This is used for applications requiring current-controlled 
PWMs, typically for driving DC motors or solenoids. 
In this case, a comparator monitors the peak current 
value into the load. 
As soon as the current exceeds a programmed threshold, 
the comparator resets the PWM output, which is then 
automatically re-started at the next PWM period, thus 
providing a controlled peak current value.
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For a timer with a 16-bit resolution, increasing the 
resolution implies to decrease the frequency.
For a given PWM clock frequency, 
-If 14 bits of the timer are used, the PWM period is 2^14 
clock cycles and the resolution is the PWM period 
divided by 2^14.
-If 13 bits of the timer are used, the PWM period is 2^13 
clock cycles and the resolution is the PWM period 
divided by 2^13.
The PWM mode effective resolution can be increased by 
enabling the dithering mode.
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When the dithering mode is enabled, the register coding 
is changed:
- The 4 least significant bits are coding for the enhanced 

resolution part (fractional part)
- The most significant bits are left-shifted to the bits 19:4 

and are coding for the base value.
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The curves on the left indicate the PWM resolution 
according to the PWM frequency.
For a given resolution, the frequency when dithering is 
enabled is larger than without dithering.
The timing diagram on the right explains the dithering 
principle: adding or not a timer clock period over 16 
consecutive PWM periods, according to the selected 
duty cycle. 
This allows a 16-fold resolution increase, considering the 
average duty cycle or PWM period
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The auto-reload and compare values increments are 
spread following specific patterns.
In this timing diagram, it is assumed that the counter 
period is fixed, only the duty cycle will vary.
The pattern will depend on the reminder of the division 
between the compare value and 16.
On the first timing diagram, the compare value 
programmed in CCR1 is equal to 322.
322 = 20*16+2.
So the reminder of the division between 322 and 26 is 2. 
It means that during two periods over 16 periods, the 
least significant bit of the compare value is incremented.
The dithering sequence is done to have increments 
distributed as evenly as possible and minimize the 
overall ripple.
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This slide presents the timer’s synchronization features.
The trigger controller can cascade multiple timers in a
master/slave configuration. 
A timer can control one or more timers as the master 
timer, or be controlled by another timer as a slave. 
The Clock and Trigger controller acts as a link between 
the timers. 
In Master mode, it can redirect outside the timer, multiple 
internal control signals, to an on-chip TRGO trigger 
output. 
In Slave mode, it gathers multiple inputs on the TRGI 
(the main trigger input) coming from the external trigger 
pin (ETR) or from one of the 11 internal trigger inputs 
(ITR0 to ITR10), connected to the other TRGO outputs. 
Additionally, the input capture 1 and 2 pins can also be 
used as an internal trigger (typically to reset the counter). 
Slave and Master modes can be programmed 
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independently. 
A given timer can thus simultaneously be operating in 
Slave and Master modes in a cascaded configuration, 
accepting input triggers while providing output triggers.
Master synchronization and slave synchronization are 
independently instantiated in the timer units. 
See the table at the end of this presentation, summarizing
the capabilities of all STM32G4 timers. 
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This slide lists the various operating modes and the 
signals exchanged between timers.
In Master mode, 16 options are given for selecting the 
trigger to be sent on the TRGO output. 
The output can be a single synchronization pulse issued 
upon counter reset, counter enable which corresponds to 
the counter start, the update event or the compare 1 
match event. 
Alternatively, the TRGO output can also transmit one of 6 
waveforms generated, including PWM signals, to the 
other timer modules (Compare on channel 1 to 6 and 
compare pulses on all channels).
In Slave mode, the timer operating mode is controlled by 
the TRGI input. 
In Triggered mode, the counter start is externally 
controlled. This mode is used for simultaneously starting
multiple timers. 
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In Reset mode, the counter is reset by a rising edge on 
the TRGI input, typically for variable frequency PWM 
operation. 
A Combined mode including reset and trigger can be 
used for re-triggerable one-pulse mode generation. 
In Gated mode, shown in the timing diagram, the counter 
is active only while the level on the input signal is high. 
A combined mode including reset and gated can be used 
to detect out-of-range PWM signal (duty cycle exceeding 
a maximum expected value).
The external clock mode 2 can be used in addition to 
another slave mode (except external clock mode 1 and 
encoder mode). 
In this case, the ETR signal is used as external clock 
input, and another input can be selected as trigger input.
Lastly, the slave mode selection includes clock-related 
modes, such as quadrature encoder decoding or external 
clocking modes mentioned earlier in this presentation.
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This slide gives two examples of synchronized operation.
The first example shows how four timers can be
simultaneously started. 
A mechanism allows the master timer to start slightly 
delayed to compensate for the master/slave link delay, 
and have all timers synchronized with cycle accuracy. 
By combining the channels of Timers 1, 2, 3 and 8 as 
shown, it is possible to have up to 16 synchronized PWM 
channels.
The second example shows how to create a 48-bit timer 
by cascading three timers. 
Here the update event generated on counter roll-over is 
used as the input clock for the following slave timer, so 
that Timer 1’s counter holds the least significant 16-bits, 
Timer 2’s counter holds the medium bits (bits 16 to 31) 
and Timer 3’s counter holds the upper bits from bit 32 to 
bit 47.
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This slide summarizes the timer’s four main electrical 
motor control features:
The timer includes specific PWM modes for controlling 

power switches. In addition to center-aligned and 
combined 3-phase PWMs previously described, the 
timer features dead time insertion for complementary 
PWM generation and 6-step mode for driving brushless 
DC motors.

It includes power stage protection circuitry with a dual-
level emergency stop mechanism to disable the PWM 
outputs by hardware in case of a fault.

It is able to handle the most common sensors found in 
motor control systems. Quadrature encoders and Hall 
sensors are used for fine and coarse position 
feedback, while tachometer generators are used for 
cost-effective speed feedback and just require a Clear-
on-capture mode.
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Lastly, the timer includes synchronized ADC triggering 
options, necessary to properly manage voltage and 
current sensing and avoid any acquisition issue due to 
switching noise in power stages.

33



This slide presents the dead time insertion function.
A hardware dead time generator provides two non-
overlapping complementary PWMs from a reference 
PWM signal. 
The STM32 timers includes up to four dead time 
generators for OC1, OC2, OC3 and OC4 channels. The 
dead time duration is programmed with an 8-bit value. 
This value can be locked by the user to prevent this 
critical value from being corrupted during run-time. 
This is done by setting a write-once lock bit which 
switches the dead time register into read-only mode until 
the next MCU reset.
Dead time insertion is necessary when driving half-
bridges, where a pair of transistors are connected in 
series between two power rails. 
In this case, it is necessary to insert some time before 
the switch on of one side to allow the other side to switch 
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off, taking into account physical switching characteristics. 
Half-bridges are usually found in DC/DC converters, for 
DC or stepper motor drive, using the full-bridge topology 
shown here or for 3-phase inverters, with three PWM 
pairs.
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In symmetrical mode, the dead time duration is the same 
on both falling and rising edge of the OCx output.
In asymmetrical mode, the rising edge-referred deadtime 
is defined by the DTG[7:0] bitfield, while the falling edge-
referred is defined by the DTGF[7:0] bitfield. 
It is useful for applications having asymmetrical gate 
driver or opto-coupler propagation delays.
It is possible to have the deadtime value updated on-the-
fly during pwm operation, using a preload mechanism. 
The preload value is loaded in the active register on the 
next update event.
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This slide shows how the 6-step drive (also called block 
commutation) is managed with the STM32 timer.
It consists of chaining two timers, one handling the three 
Hall sensor signals while the other manages the PWM 
generation synchronized with the rotor angular position, 
generating six successive steps.
The first timer operates in clear-on-capture mode, 
triggered by the three inputs. 
A compare register (here compare 2), is responsible for 
adding a programmable delay between the raw angular 
position and the commutation time. 
The capture register 1 holds the timing interval between 
successive Hall sensor edges and is necessary for the 
speed regulation loop.
The compare 2 match event is propagated to the slave 
timer through the TRGO output. 
These events serve as commutation events and trigger 



changes for PWM generation. 
For each of the six steps of the sequence, the states of 
the six outputs are defined to be either forced active or 
inactive, or generating a PWM signal. 
The transition from one step to the other is preloaded by 
software, in the commutation interrupt routine, and 
automatically transferred by hardware to re-program the 
output operating mode when the next commutation 
arrives.
The figure at right shows the six PWM signals for two 
consecutive, complete 6-step sequences, together with 
the current in one of the motor phases.
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This slide presents the break function.
A break event triggers a hardware protection mechanism
that automatically disables the PWM outputs, and forces 
them to a user-configurable state, either low impedance 
with high or low level, or high impedance. 
The logic circuitry works asynchronously, without any 
clock. 
This guarantees the functionality even in case of a 
system clock failure, and avoids any clock-related 
propagation time that would tend to delay the protection.
This feature is available on all timers having 
complementary PWM outputs, which are capable of 
performing power conversion tasks: Timers 1, 8, 15, 16, 
17 and 20.
Timers 1, 8 and 20 have two separated break channels, 
while Timers 15, 16 and 17 support a unique break 
channel. 
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Supporting two break channels provides a dual-level 
protection scheme, where for instance a low priority 
protection with all switches off can be overridden by a 
higher priority protection with low-side switches active. 
Furthermore, a dead time delay can be inserted 
immediately before entering the fault mode for safely 
disabling the power stage. 
This prevents potential shoot-through conditions. 
Let’s consider for instance that the fault occurs when the 
high-side PWM is ON, while the safe state is programmed
to have high-side switched OFF and low-side switched 
ON. 
At the time the fault occurs the system will first disable 
the high-side PWM, and insert a dead time before 
switching ON the low side.
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This slide describes the break function related to the 
BRK input.
Multiple break sources can be combined for triggering a 
break event. 
A system break request results from serious errors 
detected in the MCU: CPU lockup, Power Voltage Drop, 
RAM parity error, flash ECC error and loss of clock. 
The Lock signals are write-once enable bits located in 
the SYSCFG peripheral. 
They are reset by default (fault error is masked). 
Once set (fault detection is enabled), they cannot be 
reset unless the whole MCU is reset, for functional 
safety.
An application break request results from a board failure.
Break inputs can also be selected with the alternate 
function controller, on the microcontroller pinout.
External sources can be conditioned before entering the 
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break detection unit in order to select the proper polarity 
and discarding of spurious glitches by means of a digital 
filter.
Software is also capable of requesting a break, typically 
when diagnosing an unrecoverable error condition.
When one of these break requests occurs, an interrupt or 
DMA request is asserted, in addition to set the PWM 
outputs in a safe state.
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This slide describes the break function related to the 
BRK2 input.
Unlike the BRK input, the BRK2 event can be caused 
neither by a system break request nor by a software 
break request.
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The STM32G4 implements a bidirectional break. 
The break IO pad is used to report board-level failure,
but can also be used as an output to signal a 
microcontroller internal failure.
The bidirectional mode is available for both the Break 
and Break 2 inputs, and require the I/O to be configured 
in open-drain mode with active low polarity.
A global break information detected inside the STM32G4 
can therefore be output to other CPUs or gate drivers.
Internal break sources and multiple external open drain 
comparator outputs are ORed together to trigger a 
unique break event, when multiple internal and external 
break sources must be merged.
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This slide explains how to arm and disarm the break 
circuitry.
The bidirectional mode is active when the BKxBID bit is
set. x means BK or BK2 break signal.
Since the break IO pad is bidirectional, a low level on the 
break input triggers a break which enforces a low level 
on the same pad. 
Therefore a disarming mechanism is required to exit the 
break condition.
The Main Output Enable (MOE) bit is relevant when a 
channel is configured as an output. 
It is cleared asynchronously by hardware as soon as one 
of the break inputs is active to disable OC and OCN 
outputs.
The following sequence should be used to re-arm the 
protection after a break event:
• The BKDSRM (BK2DSRM) bit must be set to release 
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the output control
• The software must wait until the system break 

condition disappears (if any) and clear the SBIF status 
flag (or clear it systematically before re-arming)

• The software must poll the BKDSRM (BK2DSRM) bit 
until it is cleared by hardware (when the application 
break condition disappears)

From this point, the break circuitry is armed and active, 
and the MOE bit can be set to re-enable the PWM 
outputs.
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This slide presents the ADC triggering options related to 
the timers.
The ADCs can be triggered with most of the STM32 
timers.
This can be done using compare events: the ADC 
conversion will start on a given compare match. This 
applies to timer channels 1 to 4.
The TRGO event can also be used on certain timers. 
This gives extra flexibility since the TRGO can be any of 
the compare events or timer internal control signals, 
such as register update, counter reset or trigger input. 
On the other hand, this prevents the TRGO from being 
used for synchronization purposes.
For this reason, timers also have an additional TRGO2 
output, fully devoted to ADC triggering.
TRGO2 offers 16 possibilities, including the six compare 
events and the possibility to have a dual trigger per PWM 
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period, by combining the compare 4 and 6 events, as 
shown in the figure, or compare 5 and 6 events. 
This also leaves the TRGO free for multiple timer 
synchronization schemes.
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This slide presents an example of PWM-synchronized 
ADC trigger.
For 3-phase motor control, it is mandatory to have ADC 
readings synchronized with the PWM generated for 
controlling the power stage. 
This allows extraction of the average value out of the 
current waveform ripple, and makes sure the ADC 
reading is done at an adequate distance from the ringing 
due to the power switches.
Shown here on the left is a 3-phase motor inverter. 
The six switches are controlled by three complementary 
PWM pairs with dead time inserted, while the current in 
the motor windings is measured using shunt resistors 
placed in the three half-bridges’ bottom side. 
The right side shows the timer’s counter, compare 1 and 
compare 2 values and corresponding PWM outputs for 
the low-side switches controlled by CH1N and CH2N. 
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The two bottom waveforms represent the current in the 
motor phase and the image of this current obtained on 
the shunt resistors. 
With this low-cost topology, the voltage can only be 
measured when the low-side switches are ON, which 
explains the square-wave-shaped signal obtained on the 
ADC input. 
In this case, the ADC trigger is generated on the counter 
roll-over. 
This allows the reading to be done precisely in the middle 
of the period and get the average value of a signal with 
significant ripple. 
Additionally, using a PWM-synchronized ADC trigger also 
guarantees that the ADC conversion will be done away 
from the ringing noise present on the shunt voltages.
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This slide lists the interrupts and DMA requests sources.
Most of events are able to generate either an interrupt or 
a DMA request, and even the two simultaneously. 
The update is issued when the counter overflows or 
underflows. It is mainly used to refresh the timer’s run-
time settings at the beginning of the PWM period and 
maximize the interval before the next register update. 
The repetition counter allows you to skip some PWM 
periods and decrease the number of interrupts or DMA 
requests at high PWM frequency.
Each of the six capture/compare events have their own 
interrupt. 
Only channels 1 to 4 can trigger a DMA transfer.
A trigger event on the TRGI input (regardless of the 
trigger source) can trigger an interrupt or DMA request.
In encoder mode, the counter can be reset by the an 
Index signal coming from the encoder, indicating an 



absolute reference position.
This index event can also cause an interrupt.
Furthermore, the encoder mode can detect two errors: 
transition error and index error that can also cause 
interrupts.
An interrupt can be caused by the detection of a direction 
change in encoder mode.
Lastly, additional sources of interrupts and DMA requests 
are the commutation and break events.
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The timer includes a DMA burst mode to have multiple 
registers re-programmed with a single DMA stream.
This allows the modification of several run-time 
parameters simultaneously (for instance duty cycle and 
frequency of several channels) or dynamically change 
the timer configuration by writing the configuration 
registers. 
The example shows how a table containing three 
compare values can be transferred into the compare 
registers with a single DMA burst when a new PWM 
period starts.
The DMA must be programmed in memory to peripheral 
mode, pointing to a unique location in the timer (virtual 
register TIMx_DMAR). 
When the update event occurs, the timer sends a 
number of DMA requests corresponding to the 
programmed burst length. 
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Each value is then automatically redirected from the 
virtual register into the active register targeted.
On the next update event, three new compare values are 
transferred again. 
In this example, this mechanism saves two DMA streams 
that would normally be necessary for such an update 
scheme.
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This table indicates the state of the general-purpose 
timers (GPT) according to the current MCU power mode.
In Run, Low-power run, Sleep and Low-power sleep 
modes, the general-purpose timers are active.
In Sleep and Low-power sleep modes, GPT interrupts 
cause the device to exit respectively Sleep or Low-power 
sleep mode.
In Stop 0 and 1 modes, the general-purpose timers are 
frozen. The peripheral register content is kept. No 
reconfiguration of the GPT is needed when exiting these 
modes.
In Standby and Shutdown modes, the general-purpose 
timers are powered down and must therefore be 
reinitialized upon exit of these modes.
Note that for low-power use cases, the LPTIMER offers 
extended features, such as full operation and wake-up 
capabilities in Stop 0 and 1 modes.



The timer’s state in Debug mode can be configured with 
one configuration bit per timer.
If the debug bit is reset, the timer clock is maintained 

during a breakpoint.
If the debug bit is set, the timer’s counter is stopped as 

soon as the core is halted. Additionally, the outputs of 
the timers having complementary outputs are disabled 
and forced to an inactive state. This feature is 
extremely useful for applications where the timers are 
controlling power switches or electrical motors. It 
prevents the power stages from being damaged by 
excessive current, or the motors from being left in an 
uncontrolled state when hitting a breakpoint.
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This slide explains how to set the timer’s PWM 
frequency.
This parameter is defined using the autoreload value 
(ARR) programmed in the TIMx_ARR register and the 
clock prescaler programmed in the TIMx_PSC register.
The PWM frequency is given by the timer operating 
frequency (fTIM) divided by ARR+1 times the clock 
prescaler+1.  
Practically, finding both register values is an iterative 
process, where one must start from PSC = 0, i.e. no 
clock division. This guarantees that the PWM will have 
the finest possible resolution.
In this case, the ARR value is simply the ratio between 
the timer clock frequency and the PWM frequency, the 
whole minus 1.  
If this equation yields an ARR value above the timer’s 
ARR range, either a 16-bit or 32-bit value depending on 

48



the selected timer, the computation must be re-done with 
a higher prescaler value, with the following sequence:
An ARR value equal to timer clock frequency divided by 
two over the PWM frequency, the whole minus 1, then an 
ARR value equal to timer clock frequency divided by 
three over the PWM frequency, the whole minus 1, and 
so on up to the point where the ARR value fits within the 
programmable range.
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This slide explains how to program a duty cycle for a 
given PWM frequency.
This parameter is defined using the autoreload value 
(ARR) programmed in the TIMx_ARR register and the 
compare value programmed in the TIMx_CCRx register.
The duty cycle does not depend on the PWM frequency 
and is given by the compare value +1 over the 
autoreload value +1.
Another useful indication is the PWM resolution. 
This gives the number of possible duty cycle values and 
indicates how fine the control on the PWM signal will be. 
The resolution, expressed in number of duty cycle steps, 
is simply equal to the ratio between the timer clock 
frequency and the PWM frequency, the whole minus 1.  
Another way of expressing it is in bits, as for giving a 
DAC converter output resolution. In this case, the 
resolution is the base 2 logarithm of the ratio between 
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the timer clock frequency and the PWM frequency, the 
whole minus 1.
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This slide shows a simple practical example of PWM 
usage, for dimming a low-power LED.
This can be done directly using a PWM output, as long 
as the current does not exceed the rated output current. 
The 1st step is to program the frequency, to be set to 
1 kHz. When doing the ARR value computation with no 
prescaler and a timer operating frequency of 128 MHz, 
the result is 127999, which is above the 16-bit range that 
can be used with Timer 1.
The timer prescaler must be set to 1 to have the timer 
operating at 64 MHz and this results in a valid value of 
63999 for the ARR register.
The second step consists of computing the Compare 
register value to have a 20% duty cycle. This yields a 
value of 12799.
Lastly, the dimming resolution can be computed from 
formulas presented in the previous slides. With a timer 

50



running at 64 MHz, a 1 kHz PWM provides 640000 
dimming steps, which corresponds to an equivalent 
resolution of 15.9 bits.
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This slide explains a common support case, where the 
whole timer is configured, the counter is started, the
PWM mode is enabled, as well as the corresponding 
outputs, but still there’s no activity on the pins.
Usually, this is because the MOE bit or the CCxE bit was 
not set.
The CCxE bit in the TIMxCCER register defines the 
configuration of a CCx channel as input or output. The 
CC1E bit must be set to get a PWM signal on the CH1 
channel.
For timers equipped with dead time generators, a Main 
Output Enable (MOE) bit in the TIMx_BDTR registers 
controls all outputs and acts as a circuit breaker in case 
of fault detection on the break input (global disable of all 
PWM outputs).
The MOE bit must be set (armed) to have the outputs 
enabled.
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This is valid even if the timer is used without dead time 
insertion, and the timer is used for general-purpose 
applications.
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This slide lists the timer instances present in STM32G4 
microcontrollers.
Timers 1, 8 and 20 are full-featured timer, motor control 
capable, including all PWM options and six compare 
channels for being able to generate simultaneously 3-
phase PWM signals and have two independent ADC 
triggers.
Timers 15, 16, 17 are general-purpose timers. 
Only Timer 15 supports a complementary channel and 
advanced PWM modes.
Timers 2, 3, 4 and 5 are general-purpose timers, 
including advanced PWM modes, up-down counting 
capability and 4 channels. Timer 2 and 5 additionally 
offer a 32-bit counting range.
Lastly, Timers 6 and 7 are pure time bases with no 
outputs, used principally to trigger the DAC converters or 
to provide software time bases.

52



Input capture and output compare is not supported by 
Timers 6 and 7.
Any timer capable of PWM supports the dithering mode.
Programmable dead-time makes sense when the timer 
has complementary outputs, which is the case for Timer 
1, 8, 20 (channels 1 to 4) and Timer 15 (channel 1).
Timers 1, 8, 20, 15, 16, and 17 support a break input.
Retriggerable one pulse mode is not supported by 
Timers 16, and 17.
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Only Timers 1, 8, 20 and 2, 3, 4, 5 have the 3-mode 
encoder interface: quadrature, clock plus direction and
directional clock. 
Any timer having this encoder interface supports the 
index pulse and detects encoder errors.
XOR function that combines channels is only available in 
Timers 1, 8, 20 and 15.
All timers can request DMA transfers through the 
DMAMUX unit, including basic timers.
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The timer is linked with multiple on-chip peripherals. 
It serves as a trigger source for the ADC and the DAC
converter.
The interconnect matrix enables timer to timer direct 
connection, using the master and slave interfaces, and 
also direct connection between timers and other 
peripherals.
The Reset and Clock Control unit, called RCC, provides 
the internal clock reference for all timers.
At last, the comparator units can detect abnormal 
temperature or voltage conditions and cause a timer 
break event.
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Three application notes complement the timer sections in 
the reference manual:
AN2592 gives a practical implementation of a 32-bit 
timer made of two synchronized 16-bit timers, and is 
useful for better understanding the overall timer 
synchronization mechanism. It comes with a software 
example.
AN4013 provides a more detailed overview of all timer 
features and available firmware examples.
AN4507 presents an implementation of PWM resolution 
enhancement by means of dithering techniques. It 
comes with a software example.
AN4776 starts with few reminders on timer operating 
principles and contains a collection of examples for 
standard timer use cases. It comes with a software 
example.
AN4507 presents a dithering technique that enhances 
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the PWM resolution. It comes with a software example.
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