

User manual

How to use STM32 motor control SDK v6.0 workbench

Introduction

The STM32 motor control software development kit (MC SDK) is part of the STMicroelectronics motor-control ecosystem. It is referenced as X-CUBE-MCSDK or X-CUBE-MCSDK-FUL according to the software license agreement applied. It includes:

- ST MC FOC firmware library for permanent magnet synchronous motor (PMSM) field-oriented control (FOC)
- ST MC 6-step firmware library
- ST motor profiler
- ST motor pilot
- ST MC workbench software tool, a graphical user interface (GUI) for the configuration of MC SDK firmware library parameters

This user manual explains how to use the ST MC workbench software tool included within the MC SDK firmware version 6.0.

1 General information

The ST MC workbench software tool is part of the MC SDK that is used for the development of motor control applications running on STM32 32-bit microcontrollers, based on the Arm[®] Cortex[®]-M processor.

The ST MC workbench provides the user with an easy and friendly way to configure his MC application software matching his hardware setup.

When completed, the user can directly generate his project which is compatible with the STM32CubeMX usage for a further MC application extension.

The ST MC workbench runs on a PC system using Windows[®] and requires a USB Type-A connector.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2 Related documents

57

Documents available from Arm® infocenter website

- Cortex[®]-M0 Technical Reference Manual
- Cortex[®]-M3 Technical Reference Manual
- Cortex[®]-M4 Technical Reference Manual

Documents available from www.st.com or your STMicroelectronics sales office

- STM32F0xx datasheets
- STM32F3xx datasheets
- STM32F4xx datasheets
- STM32G4xx datasheets
- STM32G0xx datasheets
- STM32F7xx datasheets
- STM32H7xx datasheets
- STM32L4xx datasheets

Motor control reference documents

Table 1 presents the documentation that helps to get a deeper understanding of the STMicroelectronics motor control solution.

Reference	Document
[AN5143]	Application note How to migrate motor control application software from SDK v4.3 to SDK v5.x
[AN5166]	Application note Guidelines for control and customization of power boards with STM32 MC SDK v5.0
[AN5464]	Application note Position control of a three-phase permanent magnet motor using X-CUBE- MCSDK or X-CUBE-MCSDK-FUL
[DB3548]	Data brief STM32 MC SDK software expansion for STM32Cube
[UM2374] ⁽¹⁾	User manual Getting started with STM32 motor control SDK v5.x
[UM2380] ⁽¹⁾	User manual Getting started with STM32 motor control SDK v5.x
[UM2392]	User manual STM32 motor control SDK v5.0.0 firmware
[UM2916]	User manual MCSDK - 6-step firmware examples: insights of the firmware and how to customize it
[UM3016]	User manual STM32 MC SDK motor profiler
[UM3026] ⁽¹⁾	User manual Getting started with STM32 motor control SDK v6.0
[UM3027] ⁽¹⁾	User manual Workbench tools for STM32 motor control SDK 6.0
[wiki]	Refer to the motor control pages at the wiki.st.com/stm32mcu STMicroelectronics wiki site

Table 1. Reference documentation

1. UM3026 and UM3027 are respectively the evolutions of UM2374 and UM2380 for MC SDK 6.0.

3 ST motor-control workbench

Launch the ST motor-control workbench software tool by clicking either its icon (Figure 1) or running directly from the installation folder.

Figure 1. ST MC workbench – Icon

The ST MC workbench GUI presents the following home area (start-up page) where there are the following sections:

- 1. The user buttons area (Area 1 in Figure 2) to start either a new project or load a previous one, as well as launch the ST Motor Profiler or Motor Pilot software tools.
- 2. The recent projects area (Area 2 in Figure 2) to load a user's recent project.
- 3. The example projects area (Area 3 in Figure 2) to load a project example.

Figure 2. ST MC workbench – GUI (Home view)

lew project 🛛 🖨 Load Project	Motor Profiler	Motor	Pilot ① About				
ent Projects:							
STM32G474EVAL 3Sh Raw	Kit 3Sh STM02G40188		STM32G474E-EVAL-STEVAL-IPM STM32G474GE	STM32G474EVAL 3Sh		B-G431B-ESC1 STM22508188	
Type: FOC / Three Shunt Resistors Centrel: STM32G474E-EVAL Powen: STEVAL-IPA058 Motors: Allen Bradley 1	Type: FOC / Three Shurt Resis Centrel: NUCLEO-G431R8 Powers: X-NUCLEO-INITIANT Motors: GimBal GBM2808H-1	tors 007	Type: FOC / Three Shurt Resistors Control: STM32G474E-EVAL Powers: STEVAL-IPA056 Motors: Allen Bradley 1	Type: FOC / Three Shunt Resistors Control: STM32G474E-EVAL Powers: STEVAL (#M05E Motors: Allen Bradley 1	0	Type: FOC / Three Shunt Revisions Control: STM32G010-EVAL Powers: STEVAL (IMASS Motors: Allen Bradley 1	
mple Projects:							
Project name	0 🧠 MCU	0 0. Type 0	Q. Control	0 Q Powers		O Motors O	Description
Ot 35h	STM32G431RB	FOC / 3Sh	NUCLEO-G431RB	X-NUCLEO-IHM16M1		GimBal GBM2804H-100T	
Ot 1Sh	STM32G431RB	FOC / 1Sh	NUCLEO-G431RB	X-NUCLEO-IHM16M1		GimBal GBM2804H-100T	
TM32G474EVAL 3Sh	STM32G474QE	FOC / 3Sh	STM32G474E-EVAL	STEVAL-IPMOSF		Allen Bradley I	A WARNING - Connect PE14 to PE15 on CN6 an
TM32G474EVAL 15h	\$TM32G474QE	FOC / 1Sh	STM32G474E-EVAL	STEVAL-IPMOSF		Allen Bradley I	A WARNING - Connect PE14 to PE15 on CN6 and
TM32G474EVAL 35h Raw	STM32G474QE	FOC / 3Sh	STM32G474E-EVAL	STEVAL-IPM05F		Allen Bradley I	A WARNING - Connect PE14 to PE15 on CN6 an
I-G4318-ESC1	STM32G431RB	FOC / 3Sh	8-G4318-ESC1	B-G431B-ESC1		Shinano LA052-080E3NL1	
Step Kit	STM32G431R8	6-Step / VM	NUCLEO-G431RB	X-NUCLEO-IHM16M1		GimBal GBM2804H-100T	
Step CM	STM32G431R8	6-Step / CM	NUCLEO-G431R8	X-NUCLEO-IHM07M1		Shinano LA052-080E3NL1	

3.1 Editing field behavior

One of the common developing paths in the ST MC workbench is the editing and combo field behavior. Each edit or combo field has the following format and behavior:

Label area	Editingarea	U	nit and legend	area
Threshold:	390	V	(325 - 400 V)	

Label area

In this area, the field name is shown with optionally a number notification bullet that shows specific notes on the field. The bullet must be info (Blue), warning (Orange), or error (Red), and the specific messages pop up on the bullet mouse over.

Editing area

In this area, the user can set its value. The field (Edit or combo) assumes different styles depending on its editing state:

• Field with default value: No value specified by the user (Value in light grey). The default value can be changed silently by the application itself.

Edit fields	Combo fields
390	ADC1_IN7 (PC1)

• Field with default value in editing mode (Value in light grey): The user can edit its value. The user can

transform the default value into an explicit user value by clicking the upper-right small icon (

Edit fields					
390 N					

Field with explicit user value (Value in black): The explicit user value cannot be recalculated by the

application. The user can reset the field to its default value by pressing the upper-right small icon (⁴).

Edit fields	Combo fields
391	ADC2_IN7 (PC1)

 Field with error on value (Value in red): The user must review the field or reset the field to its default pressing the upper-right small icon.

Edit fields	Combo fields		
402	Hall Sensor		

Unit and legend area

This area is optional: It indicates the unit or the legend of the field, meaning the valid range.

3.2 New project wizard

When clicking the *New Project* button (Figure 2. ST MC workbench – GUI (Home view)), a window pops up that helps the user to define step-by-step the project configuration ().

3.2.1 General Info

47/

In the General Info step the user can set the following info:

- Project Name & Description
 - Insert a *Project name* (Optional field), if specified it is used as the default file name in save as....
 - Insert a Description (Optional field).
 - Select Motor Control Algorithm & Hardware
 - Selects Num. Motors usage.
 - Selects Algorithm type, such as FOC or 6-step.
 - Selects the ST Hardware type boards:
 - *Custom* if the system is composed of a control evaluation board together with a power evaluation board.
 - *Kit* if the ST board is an ST MC kit, meaning P-NUCLEO-IHM003.
 - *Inverter* if the ST board is a complete inverter board (Single board with both power and control electronics).

New Project		
General Info	Project Name & Description	~
Motors	Project name: Insert file name	
Power	Insert project description here	
Control	Description.	
	Select Motor Control Algorithm & Hardware	\sim
	Num. Motors: 1 V	
	Algorithm: FOC V Hardware: Custom V	
	< Prev Next > >> OK X C	Cancel

Figure 4. ST MC workbench – New project window

3.2.2 Motors

In the Motors step, the user selects the motor to use in the project. The user can select a Generic Motor or a

Profiled Motor. The *Profiled Motor*s are identified by an icon (Refer to the example in Figure 5). This step is not available in case the user selects as *Hardware* an ST MC kit (Refer to the example in Figure 9. ST MC workbench – New project window – Kit). The list provides a set of motors delivered with the application as well as the user motors.

New Project				
General Info	Motor			
Notors	Allen Bradley I			
Power Control	Allen Bradley I I-PMSM Allen Bradley TL-A220P-HJ32AN Magnetic Struct: I-PMSM Pole Pairs: 4 Max Speed: 5 krpm Nominal Volume: 225 V Nominal Current: 2.95 Apk	Profiler Info PWM Frequency: 16 kHz Cut-off frequency: 36 kHz For cate: 1 PWM Max startup speed: 2 kHz Acceleration: 500 rad/s ² Nominal Current: 2.95 Apk	2AN	Bull Running BR2804-1700kv External rotor type - 7 poles pairs brushle Magnetic Struct: SM.PMSM Pole Pairs: 7 Max Speed: 15 krpm Nominal Votage: 12 V Nominal Current: 1.2 Apk
	GimBal GBM2804H-100T IPower GBM2804H-100T Brushless Gimb Magnetic Struct: SM-PMSM Pole Pairs: 7 Max Speed: 1:57 kpm Nominal Voltage: 14.8 V Nominal Current: 5 Apk	Generic High voltage > 50 Motor high voltage Magnetic Struct: SM-PMSM Pole Pairs: 4 Max Speed: 4 rpm Nominal Voltage: 320 V Nominal Current: 4 Apk	V	Generic Low voltage <= 50V Motor low voltage Magnetic Struct: SM-PMSM Pole Pairs: 2 Max Speed: 4 krpm Nominal Voltage: 24 V Nominal Current: 1.8 Apk
	Shinano LA052-080E3NL1			

Figure 5. ST MC workbench – New project window – Motors

3.2.3 Power board

In the *Power* step, a list of available power boards is shown. The power boards are sorted by compatibility with the previously selected motor supply. A yellow warning triangle is shown if the board output power supply is not properly compatible with the motor.

Figure 6. ST MC workbench – New project window – Power

3.2.4 Control board

47/

In the *Control* step, a list of supported control boards is proposed. The list is sorted by compatibility with the selected power. An extra *Bridge* step is shown if the connectors for power and control are not compatible and require an adapter board.

New Project				
General Info	NUCLEO-F072RB			
Motors	NUCLEO-F072RB	NUCLEO-F446RE	NUCLEO-G071RB	
Power	STM32 Nucleo-64 development board wi	STM32 Nucleo-64 development board wi	STM32 Nucleo-64 development board wi	
Control	MCU: STM32F072REX Cock Frequency: 48 MH: Cock Sources crystal	MCL: STM32F46REX Clock Frequency 150 MFL Clock Frequency 150 MFL	MCI: STM32G071891 Clock frequency 64 MH Clock frequency 64 MH	
	🗅 Data Brief 🔀 Product Folder	🗅 Data Brief 🔀 Product Folder	🗅 Data Brief 📵 Product Folder	
			< Prev	Next > >> OK X Cancel

3.2.5

Bridge

In the *Bridge* step, a list of available adapters is shown to be selected. The bridge selection allows the usage of boards (power and control) that are not directly connectable because they have different connectors, such as ST morpho or motor-control connectors.

New Project	
General Info	Bridge
Motors	 X-NUCLEO-IHM09M1
Power	
Control	X-NUCLEO-IHM09M1 Motor control connector expansion boar
Bridge	
	< Prev Next > » OK X Cancel

Figure 8. ST MC workbench – New project window – Bridge

3.2.6 Kit

The *Kit* step allows the selection of available supported kits. A kit is composed of a control board, a power board, and a motor.

Figure 9. ST MC workbench -	 New p 	project	window	– Kit
-----------------------------	---------------------------	---------	--------	-------

New Project	
General Info	P-NUCLEO-IHM03
Kit	P-NUCLEO-IHM03 STM32 Nucleo Pack FOC and 6-step cont Output: NUCLEO-GASTR8 Prevent: NUCLEO-GASTR8 Prevent: NUCLEO-HHIGH3 Prevent: NUCLEO-HHIGH3 Prevent: State For the state of th
	< Prev Next > WoK X Cancel

3.2.7 Inverter

The *Inverter* step allows the selection of available inverters. The inverter is a complete board, meaning a single board with both power and control parts.

New Project	
General Info	B-G431B-ESC1
Motors	B-G431B-ESC1
Inverter	Discovery kit with STM32G431CB MCU
	Image: Construction of the second of the
	< Prev Next > » OK X Cancel

Figure 10. ST MC workbench – New project window – Inverter

3.2.8 Creating the project

At the end of the new project wizard, the user can click on the *OK* button to create the project. All hardware must be explicitly selected by the user and depends on the hardware type field.

A post-selection procedure is executed to check if the configuration allows the creation of the project. If the user selection is not valid a dialog pops up to inform the user that the choices do not allow the project creation and ask to refine them (Figure 11).

Figure 11. ST MC workbench – New project creation error

Otherwise, the user selection is valid, a motorcontrol project is created, and the project view (Figure 12) is shown with all the information that depends on the selected boards and motor.

Figure 12. ST MC workbench – Project view

3.3 Loading an existing project

When clicking the *Load Project* button (Figure 2. ST MC workbench – GUI (Home view)), a system dialog window appears and the user can select the project file (.stwb6) to load. The loaded project appears in the *Project view* (Figure 12) where the user can refine it.

3.4 **Project view**

51

The project view is composed by:

- The toolbar area
- The hardware area info
- The Project Steps area to select the hardware part to parametrize:
 - The motor,
 - The power supply, _
 - The PWM generation, _
 - And other parameters.
- The hardware configuration details area. This is used to fine-tune the selected hardware functionality and view all the main info and protection at a first glance.

Figure 13. ST MC workbench – Project view (Global view)

3.4.1 **Toolbar area**

The toolbar area is useful to control application navigation, project saving, and generation.

3.4.1.1 Home

Clicking A Home provides the user with an easy way to close the current project and come back to the home view (Figure 2. ST MC workbench - GUI (Home view)). When not already saved, a confirmation window pops up (Figure 14) asking the user to save the current project or not, as well as to cancel the action, then go back to the hardware configuration window (Figure 13).

Figure 14. ST MC workbench – Close project confirmation window

Do you really want to close the current Project?

There are unsaved data that will be lost if you click yes

3.4.1.2 Save Click Save to open the Save menu.

57/

Figure 15. ST MC workbench – Save menu

🔹 MC Workbench - *UNTITLED

- Save: Saves the user's current project. When not already saved, a file manager window pops up to save the user's current project as a new one (Figure 16).
- Save as...: Saves the user project as a new file. A file manager window pops up to save the user project as a new one (Figure 16).

🚸 Save Project					×
\leftarrow \rightarrow \checkmark \uparrow \square \rightarrow User for	older > .st_workbench > projects	~	ට 🔎 Search p	projects	
Organize 🔻 New folder					?
> 📌 Quick access	Name	Date modified	Туре	Size	
> Desktop	ST B-G431B-ESC1.stwb6	3/9/2022 9:09 AM	"ST MotorControl	25 KB	
File name: B-G431B-ESC1.	stwb6				~
Save as type: Project files (*.s	twb6)				~
	•				
∧ Hide Folders			Save	Cancel	

Figure 16. ST MC workbench – Project save as window

3.4.1.3 Generate the project

Clicking **Generate the project** generates the user application project files. If the project file is not already saved, an information window pops up to indicate that this project needs to be saved before to generate. Use the *Save & Generate* button to save and generate.

Figure 17. ST MC workbench – Save and generate

Generate the project	The project must be saved before starting generation
	Save & Generate

A window pops up (Figure 18) to allow the user to select the target toolchain, firmware package version, drive type, and generate the motor-control firmware application throw the selected STM32CubeMX.

Figure 18. ST MC workbench – Project generation

3.4.1.4 Motor Pilot

Clicking the *Motor Pilot* toolbar button launches the motor pilot application.

3.4.1.5 About

Clicking the About menu opens a window showing some application information and useful links.

Figure 19	. ST	MC	workbench -	About
-----------	------	----	-------------	-------

① About		
About		
Wotor	Control	WorkBench
Version: 6.0.0 All rights reserved ©2022 STMic	roelectronics	
Documentation	🕮 Wiki	Product Folder

3.4.2 Hardware information area

Hardware information for the current project is presented in this area.

- Product Folder: Clicking it opens the product folder page for the MCU selected.
- *Pin usage & Conflicts*: To control the pin assignment of the MCU and receive feedback about the pin conflicts (Figure 21).

Figure 21. ST MC workbench – Pin usage & Conflicts

Pins usage & Conflicts

Conflicts \Leftrightarrow	IP \$	Channel 🍦	Pin \$	Signal name
	USART3	ТХ	PC10	UART_TX
	USART3	RX	PC11	UART_RX
	ADC1	IN1	PA1	VBUS
	ADC1	IN3	PA3	TEMPERATURE_NTC
	TIM1	CH1	PA8	PWM_CHU_H
	TIM1	CH2	PA9	PWM_CHV_H
	TIM1	CH3	PA10	PWM_CHW_H
	TIM1	CH1N	PD2	PWM_CHU_L
	TIM1	CH2N	PD3	PWM_CHV_L
	TIM1	CH3N	PD4	PWM_CHW_L
	ADC1	IN2	PA2	CURRENT_AMPL_U
	ADC1	INб	PA6	CURRENT_AMPL_V
	ADC1	IN11	PB10	CURRENT_AMPL_W
	TIM1	ВК	PB12	OC_TRIGGER

51

3.4.2.2 Control Board

57

~)

Moving over *Control Board* a window pops up to give general information about the control board selected and it shows:

- Data Brief folder: Clicking it opens the relative data brief.
- Product Folder: Clicking it opens the relative product folder page.

Figure 22. ST MC workbench – Control board

3.4.2.3 Power board

Moving over

Power Board, a window pops up, gives general information about the selected power board, and shows:

- Data Brief folder: Clicking it opens the relative data brief page.
- Product Folder: Clicking it opens the relative product folder page.

Figure 23. ST MC workbench – Power board

3.4.3 Project steps and hardware configuration details

All the hardware configurations alternatives depend on the hardware selected and are accessible from the wizard steps. The wizard steps are available from the left application pane (Project Steps area) as well as from the hardware configuration details area (main project view) by clicking the boxes. The information shown in the schematic is aligned with the wizard steps choices.

3.5 **Project wizard**

The project wizard is accessible from the left pane items or the relative main schematic view. Clicking one of these items displays the full wizard pops up and the relative step. The wizard is customized depending on the selected algorithm and in any case all the steps are available, and the user can move over all of them. The project wizard is the smart way to customize and configure the motor-control application for the hardware selected. Each wizard step contains several checks and info that help the user to make the right configurations. In case of errors, the wizard does not allow the project update and asks the user to fix the errors before applying the changes. In any case, if there are errors, the firmware project generation is not allowed.

The step sequence on the wizard has a special meaning: the values of a field on a step can depend only on fields on previous steps (and not for the forward steps). The field sequence dependency is also followed inside each step: it is from top to bottom and from left to right.

3.5.1 Product Info

This is a common step where the user can set the project description, to better identify the project, specifying project characteristics and extra-user information. The project description is also visible as a small pop-up icon in the recent project list (Area 2 in Figure 2. ST MC workbench – GUI (Home view)).

FOC Wizard		
Project Info	Project	
User Interface	Insert project description here	
Stage	Description:	,
Motor	Details	
Power Supply	Algorithm: FOC	
PWM Generation	Type: CUSTOM	
Current Sensing	Control Board: STM32G474E-EVAL	
Bus Voltage Sensing	Mcu: STM32G474QE Power Board: STEVAL-IPM05F	
Temperature Sensing	Motor: I-PMSM Allen Bradley	
Speed Sensing		
Drive Settings	< Prev Next > Work X Cance	el

Figure 24. ST MC workbench – Project Info

3.5.2 User Interface

This is a common step where the user can configure the *Start and Stop button* and the *Motor Control Protocol* (*MCP*), if these features are available for the selected hardware.

Figure 25.	ST MC workbench –	User interface
------------	-------------------	----------------

FOC Wizard		
Project Info	On Start/Stop on Control board	
User Interface	No. 2013	
Stage	Trigger edge: Falling Edge	
Motor	Internal pull up/down: No Pull up - No Pull down	
Power Supply	Motor Control Protocol	~
PWM Generation		
Current Sensing	Over USARI A	
Bus Voltage Sensing	Peripheral: USART2 V TX (PA2) - RX (PA3)	
Temperature Sensing	Baudrate: 1843200 V	
Speed Sensing	🔽 Data Log	
Drive Settings	Max Signals to plot: 10 \checkmark	
	Buffer Size: 2048 V	
	Shared Buffer Size	
	Buffer Size: 128 V	
	< Prev Next > >> OK	imes Cancel

The user can change only the configurations that are available for the specific selected hardware. In the case shown in Figure 25, the Start/Stop is available only on the PC13 pin. If the hardware selected allows more possibilities a combo is available to allow the user to select the right pin to use. The Start/Stop feature can be disabled if the user does not want to use it.

3.5.3 Motor

This step is relative to the motor parameters. The default values are loaded from the selected motor during the creation of the project (Figure 5. ST MC workbench – New project window – Motors). The user can modify each motor parameter (Figure 26) and activate and configure the Hall sensor or quadrature encoder for the used motor (Figure 27).

FOC Wizard			
Project Info	Motor parameters		V
User Interface	Motor magnetic structure: S	M-PMSM 🗸	
Stage	Pole Pairs:	7	
Motor	Electrical parameters		V
Power Supply	Max current:	0.15	Apk
PWM Generation	Power board maximum rated cu	rrent: 2.1 Apk	
Current Sensing	Max DC Voltage:	. 12	v
Bus Voltage Sensing	Power board supported voltage	range: (7 - 45 Vd	c)
Tananantuna Canaina	Rs:	5.29	Ω
remperature sensing	Ls:	1.058	mH
Speed Sensing	B-Emf constant:	4.964	Vrms/kRPM
Drive Settings			
	Mechanical parameters		×
	Inertia:	0.291	µN·m·s²
	Friction:	0.937	μN·m·s
	Max. Application Speed:	1572	rpm
	Off Hall Effect		
	Off Quadrature Encoder		
			< Prev Next > >> OK × Cancel
Figure	27 ST MC workbonch Motor		at Quadratura anacdar
rigure 2			Li – Quaurature encouer
	On Hall Effect		

Sensors displacement:	120 ~	
Placement electrical angle:	300	
On O Quadrature Encoder		

Has index pin (Ch Z)

3.5.4 Power Supply

In this step, the *Max. application Current* and the *Bus Voltage* levels that are used by the application can be set. The values in this step must be the ones provided by the power supply and must be compatible with the power board and motor.

Figure 28	ST MC	workbench -	Power	suppl	у
-----------	-------	-------------	-------	-------	---

FOC Wizard	
Project Info	Provide here below the Max Current and the Bus Voltage levels that will be used by this application. Please note that these values have to be provided by your Power Supply and they have to be compatible with both PowerBoard and Motor
User Interface	Max. application Current: 2.12 A Up to 2.12 A
Stage	Bus Voltage: 14.8 V from 7 V to 14.8 V
Motor	Power board Info: Motor Info:
Power Supply	Maximum rated current: 2.12 Apk Max current: 5 Apk
PWM Generation	 Supported voltage range: (7 - 45) Vdc Max DC Voltage: 14.8 Vdc
Current Sensing	
Bus Voltage Sensing	
Temperature Sensing	
Speed Sensing	
Drive Settings	< Prev Next > >> OK × Cancel

3.5.5 PWM Generation

In this step, the user can select the PWM driving topology available for the selected hardware, PWM frequency, modulation flags, and the MCU pin configuration for the topology used. For different driving topologies, different configurations are available.

57

3.5.5.1 High and low side topology

Figure 29 shows the step for high and low side driving topology.

Figure 29. ST MC workbench	- PWM	Generation	- High	and I	ow	side
----------------------------	-------	------------	--------	-------	----	------

FOC Wizard		
Project Info	Config	~
User Interface		
	PWM Frequency:	20000 Hz from 2 kHz to 50 kHz
Stage	Driving topology:	: U, V, W, Uneg, Vneg, Wneg
Motor	SW dead-time:	850 ns from 700 ns to 1000 ns
Power Supply	PWM idle state low side:	Turn off 🗸 🗸
PWM Generation	PWM idle state high side:	Turn off V
Current Sensing	dead-time:	: 1000 ns
Bus Voltage Sensing	Modulation flags:	Over modulation Discontinuous PWM
	MCII nin manning	×
Temperature Sensing	mee pin mapping	
Speed Sensing	Timer:	: TIM1
Drive Settings	Ch. U:	: PA8
	Ch. V:	PA9
	Ch. W:	PA10
	Active Polarity:	Active high
	Ch. U neg:	PA7
	Ch. V neg:	PBO
	Ch. W neg:	PB1
	Active Polarity:	: Active low
		< Prev Next > >> OK X Cancel

57

3.5.5.2 High side and three-enable topology

Figure 30 shows the step for the high side and three-enables driving topology.

Figure 30. ST MC workbench – PWM generation – High side and three enables

FOC Wizard						
Project Info	Config					~
User Interface	PWM Frequency:	30000 Hz from 2 kHz to 50 kHz				
Stage	Driving topology:	U, V, W, enU, enV, enW				
Motor	dead-time:	550 ns				
Power Supply	Modulation flags:	Over modulation Discontinuous PWM				
PWM Generation	MCU pin mapping					~
Current Sensing	Timer:	TIM1				
Bus Voltage Sensing	Ch. U:	PA8				
Temperature Sensing	Ch. V:	PA9				
Speed Sensing	Cn. W: Active Polarity:	Active high				
Drive Settings	Enable Ch. U:	GPIO_Output (PB13) ∨				
	Enable Ch. V:	GPIO_Output (PB14) 🗸				
	Enable Ch. W:	GPIO_Output (PB15) ∨				
	Active Polarity:	Active high				
			< Prev	Next >	» ок	imes Cancel

3.5.6 Current Sensing

In this step, the user can select the available current reading topology and amplification (Figure 31). Depending on topology, amplification, and gain, the user is prompted with the relative fields to set and MCU Pin for that configuration, a schema shows the configuration graphically selected. The information on the step depends also on the selected algorithm (FOC or 6-step).

57

3.5.6.1 FOC 3-shunt external amplification

In this Current Sensing topology, the user can set the regulator execution time, T-Rise, and T-Noise. The current amplification in this case is done on the power board. Figure 31 shows the configuration.

Figure 31. ST MC workbench – Current sensing – FOC 3-shunt external amplification

3.5.6.2 FOC 3-shunt internal amplification - Internal Gain

In this Current Sensing topology, the user can set the regulator execution time, the internal PGA gain factor, the T-Rise and T-Noise. In this case, the current amplification is done using an internal MCU operational amplifier. Figure 32 shows the configuration.

FOC Wizard	
Project Info	Current Sensing
User Interface	Regulator execution time: 63 µs (1 PWM) ∨
Stage	Current reading topology: Three Shunt Resistors
Motor	Amplification: O External OpAmps
Power Supply	Gain type: Internal PGA V
PWM Generation	Sensing Type: Single Ended
Current Sensing	
Bus Voltage Sensing	T-rise: 2550 ns
Temperature Sensing	T-Noise: 2000 ns
Sneed Sensing	Readable current range: [-4.72 A, 4.71 A] - ± 4.71 A
Drive Setting	MCU pin mapping
	OpAmp OPAMP1 / OPAMP2 Channel IV: OPAMP1 / VINP / OPAMP2 / VINP (PA7) Channel W: OPAMP2 / VINP / OPAMP2 / VINP (PA7) Channel W: OPAMP2 / VINP / OPAMP2 / VINP (PA7) ADC: ADC1 / ADC2 OpAmp2 Out: ADC1 / ADC2 OpAmp2 Out: ADC1 / ADC2 OpAmp2 Out: ADC2 / IN3 (PA6) Sampling time: 153 rs: (65 adc clit) v Max Modulation: 96 %
	On Over Current Protection
	< Prev Next > Next > Work > Cancel

57

3.5.6.3 FOC 3-shunt internal amplification - External gain

In this current-sensing topology, the user can set the regulator execution time, and the T-Rise and T-Noise. In this case, the current amplification is done using an internal MCU operational amplifier. The gain depends on the gain net in the control board. Figure 33 shows the configuration.

Figure 33. ST MC workbench – Current sensing – FOC 3-shunt internal amplification – External gain

3.5.6.4 6-step current mode

This is only available for the 6-step algorithm and the user can enable or disable the current mode. The current mode can be enabled only if the feature is available for the selected hardware (Figure 34). By default, the current mode is disabled (Figure 35).

6-Step Wizard	
Project Info User Interface	Current Sensing
Stage	On O Current Mode
Motor	Current reading topology: Single Shunt Resistor
Power Supply	Amplification: External OpAmps
PWM Generation	Gain: 3
Current Sensing	Readable current range: [0. 5 A]
Bus Voltage Sensing	MCU pin mapping
Temperature Sensing	PWM Frequency: 60000 from 10 kHz to 100 kHz
Speed Sensing	Current Reference: TIM3_CH1 (PB4)
Drive Settings	ETR: TIM1_ETR (PA12) Signal polarity: Active high
	TIM1
	TIM3 CH1
	< Prev Next > >> OK × Cancel

Figure 34. ST MC workbench – 6-step – Current mode

6-Step Wizard	
Project Info	Current Sensing
User Interface	
Stage	Current Mode
Motor	
Power Supply	< Prev Next > > OK × Cancel

3.5.6.5 Over-current protection

57

From the Current Sensing step, the user can enable and configure also the over-current protection (OCP) shown in Figure 36 the settings depend on the available OCP mode for the selected hardware. A *generic* schema will show the hardware connections between signals and the MCU.

FOC Wizard		
Project Info User Interface	Conc Over Current Protection	
Stage	OCP Mode: External Comparators Digital Filter Duration: 47.06 ns	U N
Motor	Threshold: 8 A	
Power Supply	Signal polarity: Active low	
PWM Generation	Timer: Timi Lekink2 (PE14)	V TIM1
Current Sensing		
Bus Voltage Sensing		
Temperature Sensing		
Speed Sensing		
Drive Settings		
		< Prev Next > > OK × Cancel

3.5.7 Bus voltage sensing

In the *Bus Voltage Sensing* step, the user can configure the sensing of bus voltage if available for the hardware specified, and the relative Over Voltage and/or Under Voltage protection.

Figure 37. ST MC workbench -	Bus	voltage	sensing
------------------------------	-----	---------	---------

FOC Wizard	
Project Info User Interface	💽 Bus Voltage Sensing
Stage	MCU pin mapping v
Motor	ADC: ADC1_IN7 (PC1) V Bus Voltage: 325 Vdc ADC1
Power Supply	Sampling time: 1 µs (47.5 adc dk) \vee
PWM Generation	$\overline{\lor}$
Bus Voltage Sensing	Protection
Temperature Sensing	Cn Over voltage
Speed Sensing Drive Settings	Threshold 390 V (325 - 400 V) Recovery action: Disable PWM generation V
	Con Under voltage
	Threshold: 125 V (125 - 325 V)
	< Prev Next > Next > X Cancel

3.5.8 Temperature sensing

In the *Temperature Sensing* step, the user can configure the sensing of temperature if available for the specified hardware and the relative Over Temperature protection.

FOC Wizard	
Project Info	Con Compenature Sensing
User Interface	
tage	NTC thermistor info
Motor	V @ 25 *C: 1.4 V dV/dT: 19 mV/*C
Power Supply	Max working temp.: 70 °C
PWM Generation	MCU pin mapping V
Current Sensing	ADC: ADC2_IN5 (PC4)
Bus Voltage Sensing	ADC2 Sampling time: 1 µs (47.5 adc dk) ∨ 19 mV/°C + 1.4 V @ 25 °C + 70 °C max INS
Temperature Sensing	
Speed Sensing	
Drive Settings	On Over temperature protection
	Threshold: 70 °C (1 - 70 °C)
	Hysteresis: 10 °C (1 - 10 °C)
	< Prev Next > > > OK × Cancel

Figure 38. ST MC workbench – Temperature sensing

3.5.9 Speed-sensing

In the *Speed-Sensing* step, the user can select the speed sensing to use. There are different speed sensing modes that are available for both main and auxiliary sensors. The auxiliary sensor is optional and disabled by default. The speed sensing modes depend on the selected algorithm (FOC or 6-step).

3.5.9.1 FOC observer with PLL (Sensorless)

This speed sensing mode is the default for the main sensor and is always available.

Fic	ure 39.	ST	MC	workbench	- S	need-s	ensina	– Observe	r Pl I
1.15	juic 00.	U 1		WORKBEITEIT	- 0	pecu 3	childrig	0030170	

FOC Wizard	
Project Info	Main Sensor Auxiliary Sensor Sensorless start-up parameters
Stage	Speed Sensor Mode: Observer + PLL (Sensorless) V Max Num. Errors before fault 3
Motor Power Supply	Observer + PLL (Sensoriess)
PWM Generation	Variance Threshold: 25 %
Bus Voltage Sensing	Average speed depth for speed loop: 64 Average speed depth for observer equations: 64
Temperature Sensing Speed Sensing	B-emf consistency tolerance: 100 %
Drive Settings	Sensorless speed feedback
	Observer and PLL V
	G1: -24453 G2: 24551
	1: 29/65536 0.00044
	< Prev Next > Wext > Cancel

3.5.9.2 FOC observer with Cordic (Sensorless)

This speed sensing mode is always available.

Figure 40. ST MC workbench – Speed-sensing – Observer Cordic

FOC Wizard	
Project Info User Interface	Main Sensor Auxiliary Sensor Sensorless start-up parameters
Stage	Speed Sensor Mode: Observer + Cordic (Sensorless) \checkmark Max Num: Errors before fault: 3
Power Supply	Observer + Cordic (Sensorless)
PWM Generation	Variance Threshold: 25 %
Current Sensing	Average speed FIFO depth for speed loop: 64
Bus Voltage Sensing	Average speed FIFO depth for observer equations: 64
Temperature Sensing	B-emf consistency tolerance: 100 %
Speed Sensing	8-emf consistency gain: 100 %
Drive Settings	B-emf quality factor: 0.018
	Maximum application acceleration: 6000 rpm/s
	C Sensoriess speed feedback
	Observer V
	☑ Auto Calculate
	G1: -24453
	G2: 24351
	< Prev Next > >> OK × Cancel

57

3.5.9.3 FOC quadrature encoder

This speed-sensor mode depends on hardware availability and motor capability. The motor must have the sensor enabled and the feature must be supported by the hardware.

FOC Wizard		
Project Info User Interface	Main Sensor Auxiliary Sensor	
Stage	Speed Sensor Mode: Quadrature Encoder	
Motor	Max Num. Errors before fault:	
Power Supply	Quadrature Encoder	
PWM Generation	Average speed FIFO depth: 16	
Current Sensing	Input capture filter duration: 0.7 µsec	
Bus Voltage Sensing	Pulse per mechanical revolution: 400	
Temperature Sensing	Reverse counting direction	
Speed Sensing		
Drive Settings	Start-up parmeters v	
	Duration: 700 ms	
	Alignment electrical angle: 90 deg	
	Final current ramp value: 2.95 A	
	MCU pin mapping V	
	Timore TU42	
	Encoder A: TIM2_CH1 (PA0)	
	Encoder B: TIM2_CH2 (PD4)	
	< Prev Next > DK × Cancel	

Figure 41. ST MC workbench – Speed-sensing – Quadrature encoder

3.5.9.4

Hall sensor

This speed sensor mode depends on hardware availability and motor capability. The sensor must be enabled for the motor and the hardware must support the feature. This speed sensor mode can be used in FOC and 6-step algorithms.

Figure 42. ST MC workbench –	• Speed-sensing – Hall sensor
------------------------------	-------------------------------

FOC Wizard		
Project Info	Main Sensor Auxiliary Sensor	
Stage	Speed Sensor Mode: Hall Sensor	
Motor Power Supply	Hall Sensor	~
PWM Generation	Average speed FIFO depth: 16	
Eurrent Sensing Bus Voltage Sensing	Input capture filter duration: Sensors displacement: 120 deg	
Temperature Sensing Speed Sensing	Pracement electrical angle: 500 deg	
Drive Settings	MCU pin mapping	~
	Timer: TIM2 Hall sensor H1: TIM2_CH1 (PA0)	
	Hall sensor H2: TIM2_CH2 (PD4) Hall sensor H3: TIM2_CH3 (PD7)	
	< Prev Next > SK × Can	cel

57

3.5.9.5 FOC sensor-less start-up parameters

The settings of the sensor-less start-up parameters are available only if the main sensor selected is sensorless (Observer with PLL or observer with Cordic).

,	Main Sensor	Auxiliary Sensor	Sensorless start-up para	meters	
Jser Interface	Start-up profi	le			
age					
Notor		Initial	electrical angle:	0 deg	On-the-fly start-up:
ower Supply		Duration (ms)	Speed target (rpm)	Current target (A)	2000 Start-up speed threshold 3.93
VM Generation	Phase 1:	1000	0	2.95	€ 1500
and Canalan	Phase 2:	3996	1998	2.95	
urrent Sensing	Phase 3:	0	1998	2.95	peed ta
is Voltage Sensing	Phase 4:	0	1998	2.95	67 500 0.98 €
mperature Sensing	Phase 5:	0	1998	2.95	0 1000 2000 3000 4000 5000
eed Sensing					Time (ms)
5					
	Execute sense	or-less algorithm start	ting from phase: 2 V		
,	Execute sense Start-up exit o	or-less algorithm start condition Start-up s	speed threshold:	1798 rpm	
,	Execute sense	or-less algorithm start condition Start-up s Consecutive co	ing from phase: 2 ~ speed threshold:	1798 rpm	
	Execute sense Start-up exit of Estin	condition Start-up s Consecutive or mated limits for the	ting from phase: 2 v speed threshold: prrect measures: e speed band toleran	1798 rpm 2	
,	Execute sense Start-up exit o Estin	condition Start-up s Consecutive or mated limits for the	ting from phase: 2 V speed threshold: porrect measures: e speed band toleran Lower limit:	1798 rpm 2 ce 93.75 %	
,	Execute sense Start-up exit o Estin	or-less algorithm start condition Start-up : Consecutive co mated limits for the	ting from phase: 2 > speed threshold:	1798 rpm 2 ce 93.75 % 106.25 %	
	Execute sense Start-up exit o Estin	condition Start-up s Consecutive or mated limits for the	ting from phase: 2 V speed threshold: prrect measures: e speed band toleran Lower limit: Upper limit:	1798 rpm 2 93.75 % 106.25 %	
	Execute sense Start-up exit o Estin	or-less algorithm start condition Start-up s Consecutive of mated limits for the p to FOC switch-or	ting from phase: 2 V speed threshold: porrect measures: e speed band toleran Lower limit: Upper limit: Ver	1798 rpm 2 ce 93.75 % 106.25 %	

Figure 43. ST MC workbench – Speed-sensing – Sensor-less start-up parameters

57

3.5.9.6 6-step sensor-less ADC

Sensor-less ADC is a specific speed-sensing mode for the 6-step algorithm.

Figuro		мс	workbonch	- 6-stop	sonsor-loss	
rigure	44. 31		workbench	- o-step	Sel1501-less	ADC

6-Step Wizard		O About	
Project Info User Interface Stage	Main Sensor Sensorless start-up parameters Speed Sensor Mode: Sensorless - ADC	V	
Motor	Max Num. Errors before fault: 3		
Power Supply	Sensorless - ADC		×
PWM Generation		Reset to defa	ult
Current Sensing	Average speed FIFO depth:	8	
Bus Voltage Sensing	Threshold [V] (Bemf rising):	0.15	v
Temperature Sensing	Threshold [V] (Bemf falling):	0.15	v
Speed Sensing	Sampling point:	90	% of PWM cycle
Drive Settings	Step change to Bemf zero crossing delay:	30	electrical degrees
	Timer:	11/14	
	MCU pin mapping		×
	Bemf Phase U:	ADC1_IN9	(PC3) V
	Bemf Phase V:	ADC1_IN15 (P80)
	Bemf Phase W:	ADC2_IN4 (P	A7)
	Bemf divider:	GPIO_Output	(PC9)
	Sampling time:	1 µs	(47.5 adc clk) 🗸
			< Prev Next > >> OK × Cancel

3.5.9.7 6-step sensorless start-up parameters

The 6-step algorithm has specific *Sensorless Start-up parameters* settings, available if the selected speed-sensing mode is sensor-less-ADC.

	Main Sensor	Sensoriess start-up p	arameters				
Interface	Start-up pro	file					
r		Initial	electrical angle:	0 deg			
r Supply		Duration (ms)	Speed target (rpm)	Current target (A)	600	Start-up speed threshold	428.67
Consistion	Phase 1:	200	0	0.32	e 450 🔺		320 ი
Generation	Phase 2:	1000	600	0.32	et (b		urrentt
nt Sensing	Phase 3:	500	600	0.32	2 300 2 2		213.34 9
oltage Sensing	Phase 4:	0	0	0.32	^ਲ 150		108.87 🕈
erature Sensing	Phase 5:	0	0	0.32	0	500 4000 4500	0
I Sensing					0	Time (ms)	2000
Settings					1	Speed target Current	target
	Execute sen	sor-less algorithm starf	ting from phase: 3 V				
	Start-up exit	condition					
	Start-up exit	condition	need threshold	600 mm			
	Start-up exit	condition Start-up s	speed threshold:	600 rpm			
	Start-up exit	t condition Start-up s Consecutive co	speed threshold:	600 rpm			
	Start-up exit	t condition Start-up s Consecutive co timated limits for the	speed threshold: orrect measures: e speed band toleran	600 rpm 10			
	Start-up exit	t condition Start-up s Consecutive co timated limits for the	speed threshold: orrect measures: e speed band toleran Lower limit:	600 rpm 10 ce 93.75 %			

Figure 45. ST MC workbench – 6-step – Sensor-less – Start-up parameters

3.5.10 Drive settings

In the *Drive Settings* step, the user can configure the current regulator as one of the following three control modes.

3.5.10.1 Speed control

This *Drive Settings* mode is always available.

FOC Wizard		
Project Info	Current regulator	~
User Interface	Everytion time 62 us	
	Control model Speed control	Feed forward
age	Contor mode. Speed control · ·	✓ Auto Calculate Torque/Flux Kp & Ki
lotor		Cut-off frequency: 3000 rad/s
ower Supply	Torque (Ia) current regulator	 Elux (id) current regulator
WM Generation	loque (iq) current regulator	rux (iu) current regulator
	Target: from speed regulator	Target: 0 A
irrent Sensing	P: 3012 / 2048 1.4707	P: 1506 / 2048 0.73535
is Voltage Sensing	I: 241 / 16384 0.01471	I: 241/16384 0.01471
mperature Sensing	Speed regulator	V Off Flux weakening regulator
eed Sensing	Execution rate: 1 ms	
ive Settings	Target speed: 1798 rpm	
	B. 2016 / 256 11	
	1: 427 / 16384 0.02606	
	V Auto Calculate Kp & Ki	
	Speed regulator	Torque (lq) current regulator
	• • • • • • • • • • • • • • • • • • •	Flux (Id) current regulator P 0.735 1 0.0147 Σ
		< Prev Next > >> OK X Ca

Figure 46. ST MC workbench – Drive settings – Speed control

3.5.10.2 Torque control

This *Drive Settings* mode is always available.

FOC Wizard		
Project Info	Current regulator	×
User Interface	Execution time: 63 µs	Use MTPA
Stage	Control mode: Torque control V	Feed forward
Motor		Cut-off frequency: 3000 rad/s
Power Supply	Torque (lq) current regulator	Flux (Id) current regulator
PWM Generation	Target: 0 A	Target: 0 A
Current Sensing	P: 3012 / 2048 1.4707	P: 1506 / 2048 0.73535
Bus Voltage Sensing	I: 241/16384 0.01471	I: 241 / 16384 0.01471
Speed Sensing		Torque (lq) current regulator
Drive Settings		P 1.47
	0 A	
	0 A	Flux (Id) current regulator
		< Prev Next > >> OK X Cancel

Figure 47. ST MC workbench – Drive Settings – Torque control

57

3.5.10.3 Position control

This *Drive Settings* mode is available only if the quadrature encoder is selected as the main speed-sensing sensor.

Figure 48. ST MC workbench – Drive settings – Position control

FOC Wizard	
Project Info	Current regulator
User Interface	
Stage	Control mode: Position control V Feed forward
	V Auto Calculate Torque/Flux Kp & Ki
Motor	Cut-off frequency: 3000 rad/s
Power Supply	Terrue (In) surrent regulator
PWM Generation	ronque (n) current regunitor
Current Sensing	Target: from position regulator Target: 0 A P: 3012 / 2048 1.4707 P: 1506 / 2048 0.73535
Rus Voltage Sensing	I: 241 / 16384 0.01471 I: 241 / 16384 0.01471
Temperature Sensing	Position regulator V Off Flux weakening regulator
Speed Sensing	Execution rate: 1 ms
Drive Settings	P: 10000 / 1024 9.76563
-	I: 1000 / 32768 0.03052
	D: 1000 / 16 62.5
	Position regulator Torque (Iq) current regulator
	$\begin{array}{c} P \\ 9.77 \\ 0.0305 \\ - \end{array}$
	Flux (Id) current regulator
	< Prev Next > >> OK X Cancel

Revision history

Table 2. Document revision history

Date	Revision	Changes
27-Apr-2022	1	Initial release.

Contents

1	Gene	eral info	ormation
2	Rela	ted doc	uments
3	ST m	notor-co	ontrol workbench
	3.1	Editing	field behavior
	3.2	New pr	oject wizard
		3.2.1	General Info
		3.2.2	Motors
		3.2.3	Power board
		3.2.4	Control board
		3.2.5	Bridge
		3.2.6	Kit
		3.2.7	Inverter
		3.2.8	Creating the project
	3.3	Loadin	g an existing project
	3.4	Project	view
		3.4.1	Toolbar area
		3.4.2	Hardware information area
		3.4.3	Project steps and hardware configuration details
	3.5	Project	wizard
		3.5.1	Product Info
		3.5.2	User Interface
		3.5.3	Motor
		3.5.4	Power Supply
		3.5.5	PWM Generation
		3.5.6	Current Sensing
		3.5.7	Bus voltage sensing
		3.5.8	Temperature sensing. 28
		3.5.9	Speed-sensing
		3.5.10	Drive settings
Rev	vision	history	
List	t of tab	oles	
List	t of fig	ures	

57

List of tables

Table 1.	Reference documentation	3
Table 2.	Document revision history	38

List of figures

Figure 1.	ST MC workbench – Icon	4
Figure 2.	ST MC workbench – GUI (Home view).	4
Figure 3.	ST MC workbench – Editing field	4
Figure 4.	ST MC workbench – New project window.	6
Figure 5.	ST MC workbench – New project window – Motors	7
Figure 6.	ST MC workbench – New project window – Power	7
Figure 7.	ST MC workbench – New project window – Control.	8
Figure 8.	ST MC workbench – New project window – Bridge	8
Figure 9.	ST MC workbench – New project window – Kit	9
Figure 10.	ST MC workbench – New project window – Inverter	9
Figure 11.	ST MC workbench – New project creation error	10
Figure 12.	ST MC workbench – Project view	10
Figure 13.	ST MC workbench – Project view (Global view)	11
Figure 14	ST MC workbench – Close project confirmation window	11
Figure 15	ST MC workbench – Save menu	12
Figure 16	ST MC workbench - Project save as window	12
Figure 17	ST MC workbench – Save and generate	12 12
Figure 17.	ST MC workbench – Dave and generate	12
Figure 10.		10
Figure 19.	ST MC workbench – About.	13
Figure 20.		14
Figure 21.	ST MC workbench – Pin usage & Conflicts.	14
Figure 22.		15
Figure 23.	ST MC workbench – Power board.	16
Figure 24.		17
Figure 25.		18
Figure 26.		19
Figure 27.	SI MC workbench – Motor – Hall effect – Quadrature encoder	19
Figure 28.	SI MC workbench – Power supply	20
Figure 29.	SI MC workbench - PWM Generation - High and low side	21
Figure 30.	ST MC workbench – PWM generation – High side and three enables	22
Figure 31.	ST MC workbench – Current sensing – FOC 3-shunt external amplification	23
Figure 32.	ST MC workbench – Current sensing – FOC 3-shunt internal amplification – Internal gain	24
Figure 33.	ST MC workbench – Current sensing – FOC 3-shunt internal amplification – External gain	25
Figure 34.	ST MC workbench – 6-step – Current mode	26
Figure 35.	ST MC workbench – 6-step – Current mode disabled	26
Figure 36.	ST MC workbench – Current sensing – Over-current protection	27
Figure 37.	ST MC workbench – Bus voltage sensing	27
Figure 38.	ST MC workbench – Temperature sensing	28
Figure 39.	ST MC workbench – Speed-sensing – Observer PLL.	29
Figure 40.	ST MC workbench – Speed-sensing – Observer Cordic	29
Figure 41.	ST MC workbench – Speed-sensing – Quadrature encoder	30
Figure 42.	ST MC workbench – Speed-sensing – Hall sensor	31
Figure 43.	ST MC workbench – Speed-sensing – Sensor-less start-up parameters.	32
Figure 44.	ST MC workbench – 6-step sensor-less ADC	33
Figure 45.	ST MC workbench – 6-step – Sensor-less – Start-up parameters	34
Figure 46.	ST MC workbench – Drive settings – Speed control.	35
Figure 47.	ST MC workbench – Drive Settings – Torque control	36
Figure 48.	ST MC workbench – Drive settings – Position control	37

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved